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Spinodal decomposition and the Tomita sum rule
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~Received 2 May 2000!

The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory
developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The
theory also gives good agreement with numerical results for the order parameter scaling function in three
dimensions. The values of the associated nonequilibrium decay exponents are given by the known lower
bounds.

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.75.1g, 98.80.Cq
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I. INTRODUCTION

In the area of phase-ordering kinetics@1#, there are a wide
variety of systems which satisfy a form of dynamical scalin
In the case of systems with a nonconserved order param
~NCOP! we have a simple approximate theoretical mo
due to Ohta, Jasnow, and Kawasaki@2# ~OJK! which cap-
tures the main scaling properties of the associated phys
systems. In the case of a conserved order parameter~COP!
the situation is much less satisfactory. The difficulty in t
COP case is that there are competing length scales w
lead to the necessity of treating crossover. This crosso
connects up the short-scaled-distance nonanalytic dom
wall behavior associated with Porod’s law@3–5# and the
large distance constraints of the conservation law. A the
is offered in this paper which is consistent with all of th
prominent scaling features in the case of a conserved sc
order parameter.

An auxiliary field method is used in essentially all th
available explicit calculations of scaling functions in phas
ordering kinetics. Thus in the OJK approach@2,6–9#, and our
previous work@10–12#, a local mapping from the origina
order parameterc onto an approximately Gaussian variab
m was developed. While these methods can be show
work well for the NCOP case, there are severe limitations
the COP case. In particular Yeung, Oono and Shinozaki@13#
found that such a local mapping in the COP case led
mathematically unacceptable results within the theory. All
these theories were developed with the idea that the m
ping, c→c(m), leads to an equation of motion form which
could be argued to be approximately consistent with
Gaussian distribution form. In Refs.@14,15# a different ap-
proach was taken in treating the NCOP case. It was sh
that the equation of motion for the auxiliary fieldm can be
constructed with appeal only to the form of the growth la
defined below, and certain general symmetry constraints.
ing an interesting expansion method it was shown how
could obtain the OJK result in zeroth order of a systema
expansion. Higher-order corrections for the associated n
equilibrium exponents were also obtained.

In this paper this general idea is applied to the simp
COP system given by the Cahn-Hilliard@16# ~CH! model.
One is led to introduce a nonlocal mapping between the
der parameter and the auxiliary field, and only certain g
eral constraints on the theory, like the conservation law
PRE 621063-651X/2000/62~5!/5967~11!/$15.00
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the generalized form of the Tomita sum rule@17#, are used to
determine the parameters characterizing the nonlocal m
ping and the correlation function for the underlying auxilia
field. Thus one has a nonlinear selection problem where
simultaneously constructs the parameters of the mapping
the scaling function. The selected scaling function is fou
to be in good agreement with the best available numer
results in three dimensions. Nonequilibrium exponents
also determined in this theory and take on values, as for
OJK theory, corresponding to the known@18# lower bounds.

II. PHENOMENOLOGY

The equation of motion in the CH model, governing t
conserved scalar order parameterc, is given in dimension-
less form by

ċ5¹2@V8~c!2¹2c#. ~1!

V(c) is a degenerate double-well potential. Typically th
system is driven by a set of uncorrelated random initial c
ditions. We look here at critical quenches where^c&50. In
this case the system is unstable, and responds by loc
growing competing degenerate patches of the stable l
temperature-ordered phases. These patches correspond
mains separated by sharp walls of widthj. As time evolves
these domains coarsen, and the order grows to progress
longer length scales. The growth lawL(t) increases without
bound at a timet after the quench. At long enough time
L(t) dominates,L(t)@j, and the order parameter correl
tion function satisfies the scaling equation@19–21#

C~r ,t ![^c~r ,t !c~0,t !&5c0
2F~x!, ~2!

wherex[r /L(t), and c0 is the magnitude ofc in the or-
dered state. The structure factor, the Fourier transform
C(r ,t), satisfies

C~q,t !5Ldc0
2F~Q!, ~3!

whereQ[qL is a scaled wave number, andd the number of
spatial dimensions. There are a number of general prope
a correct theory of the phase ordering CH model must sat
@22,12#.
5967 ©2000 The American Physical Society
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~1! The growth law is given by the Lifshitz-Slyozov
Wagner @23# form: L't1/3. This result can be obtained
number of different ways@24–26# that are all consistent.

~2! The scaled-structure factorF(Q) has aQ4 behavior
@27# for small scaled wave numbersQ directly reflecting the
conservation law.

~3! The scaled-structure factor satisfies Porod’s l
@3–6,28# for large scaled wave numbers,F(Q)'Q2(d11).

~4! The scaled-structure factor also satisfies the Tom
@17,6# sum rules. The scaling functionF(x) has no even
terms, except the first, in its expansion in powers ofx:

F~x!511F1x1F3x31¯ . ~4!

While there are theories which satisfy some of these
quirements, there has been none so far which satisfie
four. Our goal here is to find the simplest theory for the CO
case which does satisfy all of these properties and leads t
explicit form for the scaled-structure factor which can
compared to the best numerical determinations ofF(Q). The
challenge is to match the smallQ4 behavior forF(Q) with
the largeQ24 behavior~in three dimensions! while preserv-
ing the Tomita sum rule. Our approach will be similar to th
developed in Refs.@14,15#, but with some significant differ-
ences.

III. AUXILIARY FIELD MAPPING FOR COP

As in previous work, we assume in the scaling regime t
the order parameter can be decomposed into an orde
component, which contributes to the order parameter st
ture factor atO(1), and afluctuating piece which is of
higher order in powers of 1/L(t),

c5c̃1Q/L, ~5!

whereQ is O(1). Here we assume that the ordering comp
nent c̃ can be written in the form

c̃5s~m1u!, ~6!

where, as usual,s(m) is the solution of the classical inter
facial equation

d2s

dm2 5V8~s!, ~7!

with the boundary conditions limm→6` s(m)56c0 . It
turns out in this case that it is necessary to introduce
independent fieldsm andu. We will organize the theory such
thatm is treated as the auxiliary field which, as in the NCO
case, governs the short scaled distance physics assoc
with Porod’s law and the Tomita sum rule. We will assum
as a first approximation, thatm is a Gaussian variable drive
by an equation of motion of a general form compatible w
scaling and with coefficients determined by selection p
cesses described in detail below. The quantityQ is, in prin-
ciple, to be determined as a function of the more fundam
tal variablesm and u. In practice we will not need to
construct the correlations for the fieldu explicitly, or assume
that it is a Gaussian field.
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If we insert the ansatz given by Eq.~5! into the equation
of motion @Eq. ~1!#, we obtain

]c̃

]t
1

]

]t S Q

L D5¹2@V8~ c̃1Q/L !2¹2~ c̃1Q/L !#. ~8!

We can use scaling arguments to estimate the contribut
of various terms. We explicitly assume thatL(t)5L0t1/3 in
the scaling regime. The first term on the left-hand side of
~8!, ]c̃/]t, is of O(L23) in the scaling regime. Then we ca
estimate

]

]t S Q

L D'O~L24!, ~9!

and this term can be dropped when compared to the lea
order in the equation of motion. Next we can expand

V8~ c̃1Q/L !5V8~ c̃ !1V9~ c̃ !
Q

L
1O~L22!. ~10!

In comparing these two terms we have, using Eq.~6! and
m'L, that

V8~ c̃ !5
d2s~m1u!

dm2 'O~L22!, ~11!

and the term proportional toV9(c̃)5V9(c0)1O(L21)
dominates at leading order for long times. Finally we ha
that the last term on the right-hand side of Eq.~1!,

¹4~ c̃1Q/L !'O~L24!, ~12!

and can be dropped in Eq.~8!. The equation of motion then
reduces to the key result

]c̃

]t
5

k0

L
¹2Q, ~13!

wherek0[V9(c0).0.
The quantityQ is arbitrary except for the very importan

constraints that it be ofO(1) in the scaling regime, and i
must be consistent with the system ordering. It is at this st
that we realize that there is an apparent flexibility in t
construction of the scaling solution. Since there is a be
that the scaling functions are universal, there must be me
nisms, like the nonlinear eigenvalue problem encountere
Ref. @10#, which selects the scaling structures which do n
directly depend on the physics at the smaller length sca
The key assumption in going forward is that the auxilia
field method can be used to describe theinner scaling re-
gime, and that there is a crossover to anouterscaling regime
dominated by the conservation law. The building blocks
can use to constructQ, which are compatible with this cross
over and are ofO(1), arec̃ ands(m).

The simplest assumption@29# for the Fourier transform
Qq(t), robust enough to give a satisfactory solution to t
problem, is of the form

Qq~ t !5M̃q~ t !c̃q~ t !2Ñq~ t !sq~ t !, ~14!
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whereM̃q(t) andÑq(t) are functions to be determined. Th
equation of motion~13! is then given by

]c̃q~ t !

]t
52Mq~ t !c̃q~ t !1Nq~ t !sq~ t !, ~15!

where

Mq~ t !5
k0q2

L~ t !
M̃q~ t !, ~16!

Nq~ t !5
k0q2

L~ t !
Ñq~ t !. ~17!

We can easily obtain a partial solution to Eq.~15!. Let us
define the auxiliary quantity

Uq~ t1 ,t2!5e@2*
t2

t1dt Mq~t!#, ~18!

and write

c̃q~ t !5Uq~ t,t0!xq~ t !. ~19!

Taking the time derivative of this expression, we find

]c̃q~ t !

]t
52Mq~ t !c̃q~ t !1Uq~ t,t0!

]xq~ t !

]t
. ~20!

Comparing Eqs.~15! and ~20!, we obtain the equation fo
xq(t),

Uq~ t,t0!
]xq~ t !

]t
5Nq~ t !sq~ t !, ~21!

which can be rewritten as

]xq~ t !

]t
5Uq~ t0 ,t !Nq~ t !sq~ t !. ~22!

This equation has the solution

xq~ t !5c̃q~ t0!1E
t0

t

d t̄Uq~ t0 , t̄ !Nq~ t̄ !sq~ t̄ ! ~23!

or

c̃q~ t !5Uq~ t,t0!c̃q~ t0!1E
t0

t

d t̄Uq~ t, t̄ !Nq~ t̄ !sq~ t̄ !.

~24!

This nonlocal relationship betweenc̃q(t) and sq(t) should
be contrasted with the local mapping used in previous th
ries. Because of the nonlocality, the criticism of local ma
pings in the COP case due to Yeung, Oono, and Shino
@13,30# is irrelevant for the discussion here.

Note that we need to determine the functionsMq(t) and
Nq(t), and the variance of the fieldm. Averages overm are
discussed in more detail below. Focusing onN and M, for
our purposes here, we only need these quantities in the
ing regime. Inspection of Eq.~18! shows that a general form
compatible with scaling is given by
o-
-
ki

al-

Mq~ t !5
]G~Q2!

]t
, ~25!

whereQ5qL(t). Similarly,

Nq~ t !5
]G0~Q2!

]t
. ~26!

We can then write

Mq~ t !5
]G~Q2!

]Q2

]Q2

]t
5

]G~Q2!

]Q2

]

]t
q2L0

2t2/3

5
]G~Q2!

]Q2

2

3

Q2

t
[

2

3

H~Q2!

t
, ~27!

where

H~Q2!5Q2
]G~Q2!

]Q2 . ~28!

Similarly,

Nq~ t !5
2

3

H0~Q2!

t
. ~29!

For our purposes it will be sufficient to assume thatH and
H0 have power series forms

H~Q!5 (
n52

gnQn, ~30!

H0~Q!5 (
n52

gn
0Qn. ~31!

For reasons discussed below, we will work explicitly with
model where onlyg2 , g10, g2

0, andg10
0 are nonzero.

IV. STRUCTURE FACTOR

The quantity of central interest is the order parame
structure factor

C~q,t1 ,t2!5^cq~ t1!c2q~ t2!&5^c̃q~ t1!c̃2q~ t2!&,
~32!

where in the second line we recognize that in the sca
regime only the ordering component of the order parame
contributes to the structure factor. Inserting Eq.~24! for
c̃q(t1), we obtain
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C~q,t1 ,t2!5K E
t0

t1
d t̄1Uq~ t1 , t̄ 1!Nq~ t̄ 1!sq~ t̄ 1!

3E
t0

t2
d t̄2Uq~ t2 , t̄ 2!Nq~ t̄ 2!sq~ t̄ 2!L

5E
t0

t1
d t̄1Uq~ t1 , t̄ 1!Nq~ t̄ 1!

3E
t0

t2
d t̄2Uq~ t2 , t̄ 2!Nq~ t̄ 2!Cs~q, t̄ 1 , t̄ 2!,

~33!

where

Cs~q,t1 ,t2!5^sq~ t1!sq~ t2!&. ~34!

Note that we have assumed that the correlations with
initial state have decayed to zero for long times compare
theO(1) terms contributing to the scaling function. We al
note thatC(q,t1 ,t2) depends only on the magnitude ofq.

The next step is to realize thatCs(q,t1 ,t2), which we
calculate explicitly below, satisfies a scaling relation

Cs~q,t1 ,t2!5Ld~ t1 ,t2!c0
2Fs„qL~ t1 ,t2!,t1 ,t2…. ~35!

Inserting Eq.~35! into Eq. ~33! gives

C~q,t1 ,t2!5E
t0

t1
d t̄1Uq~ t1 , t̄ 1!Nq~ t̄ 1!

3E
t0

t2
d t̄2Uq~ t2 , t̄ 2!Nq~ t̄ 2!Ld~ t̄ 1 , t̄ 2!c0

2

3Fs„qL~ t̄ 1 , t̄ 2!, t̄ 1 , t̄ 2…. ~36!

Let us now define

LT
2~ t1 ,t2!5 1

2 @L2~ t1!1L2~ t2!#, ~37!

and choose a timeT such that

LT~ t1 ,t2!5L~T!. ~38!

RememberingL(t)5L0t1/3, we have

T5@ 1
2 ~ t1

2/31t2
2/3!#3/2. ~39!

Clearly for t15t25t, T5t. Now make the change of vari
ables t̄ 15Ts1 and t̄ 25Ts2 in Eq. ~36!. This requires treat-
ment of the quantity

LT~ t̄ 1 , t̄ 2!5LT~Ts1 ,Ts2!5L~T!l ~s1 ,s2!

5LT~ t1 ,t2!l ~s1 ,s2!, ~40!

where

l ~s1 ,s2!5A1
2 ~s1

3/21s2
3/2!. ~41!

Equation~36! then takes the form
e
to

C~q,t1 ,t2!5c0
2E

t0 /T

t1 /T

Tds1Uq~ t1 ,Ts1!Nq~Ts1!

3E
t0 /T

t2 /T

Tds2Uq~ t2 , t̄ 2!Nq~Ts2!

3Ld~Ts1 ,Ts2!Fs„qLT~ t1 ,t2!l ~s1 ,s2!,

3Ts1 ,Ts2…

5c0
2E

t0 /T

t1 /T

ds1Uq~ t1 ,Ts1!E
t0 /T

t2 /T

ds2Uq~ t2 ,Ts2!

3TNq~Ts1!TNq~Ts2!Ld~T!l d~s1 ,s2!

3Fs„Ql~s1 ,s2!,Ts1 ,Ts2…

5Ld~T!c0
2F~Q,t1 ,t2!, ~42!

where Q5qLT(t1 ,t2)5qL(T), and the physical scaling
function is given by

F~Q,t1 ,t2!5E
t0 /T

t1 /T

ds1Uq~ t1 ,Ts1!E
t0 /T

t2 /T

ds2

3Uq~ t2 ,Ts2!TNq~Ts1!TNq~Ts2!

3 l d~s1 ,s2!Fs~Ql~s1 ,s2!,Ts1 ,Ts2!.

~43!

We can simplify things a bit in the quantitiesUq , defined by
Eq. ~18!, where we have in the argument of the exponenti

E
Ts1

t

dtMq~t!5E
s1

t/T

dz1Mq~Tz1!. ~44!

Inserting our general form forMq , given by Eq.~27!, we
have

E
s1

t/T

dtMq~t!5E
s1

t/T

dz1

2

3

H„qL~Tz1!…

Tz1

5
2

3 Es1

t/T dz1

z1
H„Ql~z1!… ~45!

wherel (z1)5z1
1/3, and similarly

TNq~Ts1!5T
2

3

H0„Ql~s1!…

Ts1
5

2

3

H0„Ql~s1!…

s1
. ~46!

Then

Uq~ t1 ,Ts1!5e@2~2/3!*s1

t/T
~dz1 /z1!H„Ql~z1!…#, ~47!

and the scaling function is given by

F~Q,t1 ,t2!5E
t0 /T

t1 /T

ds1Uq~ t1 ,Ts1!E
t0 /T

t2 /T

ds2Uq~ t2 ,Ts2!

3
2

3

H0„Ql~s1!…

s1

2

3

H0„Ql~s2!…

s2

3 l d~s1 ,s2!Fs„Ql~s1 ,s2!,Ts1 ,Ts2…. ~48!
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We can then make one final change of integration variab
to yi5si

2/3 ( i 51,2). We then have

l ~s1 ,s2!5S s1
2/31s2

2/3

2 D 1/2

5S y11y2

2 D 1/2

5 l̃ ~y1 ,y2!,

~49!

the equation for the scaling function becomes

F~Q,t1 ,t2!5E
~ t0 /T!2/3

~ t1 /T!2/3 dy1

y1
Uq~ t1 ,Ty1

3/2!

3E
~ t0 /T!2/3

~ t2 /T!2/3 dy2

y2
Uq~ t2 ,Ty2

3/2!

3H0~QAy1!H0~QAy2!

3 l̃ d~y1 ,y2!Fs„Q l̃ ~y1 ,y2!,Ty1
3/2,Ty2

3/2
…,

~50!

and, with ȳ15z1
2/3 in the integral,

Uq~ t1 ,Ty1
3/2!5e@2*

y1

~ t1 /T!2/3

~dȳ1 / ỹ1!H~QAȳ1!#. ~51!

For our simple polynomial model given by Eq.~30! we can
carry out theȳ1 integration inUq explicitly.

V. AUXILIARY FIELD SCALING FUNCTION

We must now work out the scaling properties of the fie
s„m(r ,t)… in the case wherem is a Gaussian variable. It i
well known that in the scaling regime

Cs~r1 ,t1 ,r2t2!5^s„m~r1 ,t1!…s„m~r2 ,t2!…&

5c0
2 2

p
sin21 f 0~r1 ,t1 ,r2 ,t2!. ~52!

where

f 0~r1 ,t1 ,r2 ,t2!5
C0~r1 ,t1 ,r2 ,t2!

AS0~ t1!S0~ t2!
, ~53!

C0~r1 ,t1 ,r2 ,t2!5^m~r1 ,t1!m~r2 ,t2!&, ~54!

and

S0~ t1!5C0~r1 ,t1 ,r1 ,t1!. ~55!

Thus we need to focus on the determination of the auxili
field correlation functionC0 .

Let us assume that the general equation of motion sa
fied at Gaussian level by the auxiliary fieldm has the local
form in Fourier space,

]mq~ t !

]t
52vq~ t !mq~ t !, ~56!

for t.t0 . Since the growth law is of the formL5L0t1/3, we
see that for a scaling result we must choosevq(t)
'O(L23). Since we can estimateq'O(L21) in the scaling
regime, we write quite generally that
s

y

s-

vq~ t !5a0

1

L3 1a1

q

L2 1a2

q2

L
1a3q3

5
1

L3 ~a01a1Q1a2Q21a2Q21a3Q3!, ~57!

where Q5qL. We can use general arguments, similar
those due to Ohta and Nozaki@31#, to justify including the
odd terms inQ. Equation~57! can be rewritten in the con
venient form

vq~ t !5
]V„Q~ t !…

]t
2v0

]

]t
ln t, ~58!

where

V~Q!5aQ1bQ21cQ3, ~59!

v052a0 /L0
3, a5a1 /L0

2, b5a2 /(2L0
2), and c

5a3 /(3L0
2).

The equation of motion for the auxiliary field,@Eq. ~56!#
has the general solution

mq~ t !5e2* t0

t dt vq~t!mq~ t0!. ~60!

Inserting Eq.~58! into the integral in the exponential gives

mq~ t !5e2@V„Q~ t !…2V„Q~ t0!…#ev0 ln~ t/t0!mq~ t0!

5S t

t0
D v0

e2@V„Q~ t !…2V„Q~ t0!…#mq~ t0!. ~61!

If we then form the auxiliary field correlation function, a
defined by the Fourier transform of Eq.~54!, we obtain

C0~q,t1 ,t2!5S t1t2

t0
2 D v0

e2@V„Q~ t1!…1V„Q~ t2!…22V„Q~ t0!…#

3C0~q,t0 ,t0!. ~62!

If we go to the equal-time limit, this becomes

C0~q,t,t !5S t

t0
D 2v0

e2@2V„Q~ t !…22V„Q~ t0!…#C0~q,t0 ,t0!.

~63!

The important autocorrelation function, defined by Eq.~55!,
is given then by

S0~ t !5E ddq

~2p!d C0~q,t,t !

5
1

Ld~ t ! E ddQ

~2p!d S t

t0
D 2v0

e2@2V~Q!22V„QL~ t0!/L~ t !…#

3C0@Q/L~ t !,t0 ,t0#. ~64!

For largeL(t) we can replace

C0@Q/L~ t !,t0 ,t0#→g0 , ~65!

whereg0 is characteristic of the initial correlation function
and
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2V~Q!22V@QL~ t0!/L~ t !#→2V~Q!, ~66!

to obtain, in Eq.~64!,

S0~ t !5
g0

Ld~ t ! S t

t0
D 2v0E ddQ

~2p!d e22V~Q!5
g0

Ld~ t ! S t

t0
D 2v0

Jd .

~67!

Here we have introduced the constant

Jd5E ddQ

~2p!d e22V~Q!. ~68!

By assumption, the auxiliary field scales with the grow
law, m'L and S0(t)'L2(t). Using this result back in Eq
~67! gives

S0~ t !'L2v032d'L2. ~69!

This fixes the constantv0 to have the value

v05
21d

6
. ~70!

Using this result in the scaling regime, the auxiliary fie
correlation function, given by Eq.~62!, can be written in the
form

C0~q,t1 ,t2!5S t1t2

t0
2 D v0

e2@V„Q~ t1!…1V„Q~ t2!…#g0 . ~71!

Eventually we need the inverse Fourier transform of the n
malized correlation function

f 0~q,t1 ,t2!5
C0~q,t1 ,t2!

AS0~ t1!S0~ t2!
. ~72!

Using previous results, this can easily be put into the for

f 0~q,t1 ,t2!5@L~ t1!L~ t2!#d/2
e2@V„Q~ t1!…1V„Q~ t2!…#

Jd
.

~73!

With V(Q) given by Eq.~59!, we have in the argument o
the exponential:

V„Q~ t1!…1V„Q~ t2!…5aq@L~ t1!1L~ t2!#1bq2@L2~ t1!

1L2~ t2!#1cq3@L3~ t1!1L3~ t2!#.

~74!

If we introduceLT(t1 ,t2), as in Eq.~37!, andQ5qLT , we
obtain

V„Q~ t1!…1V„Q~ t2!…52aQl1~ t1 ,t2!12bQ2l 2~ t1 ,t2!

12cQ3l 3~ t1 ,t2!, ~75!

where

l n~ t1 ,t2!5
1

2 S Ln~ t1!1Ln~ t2!

LT
n~ t1 ,t2! D 5

1

2

t1
n/31t2

n/3

„

1
2 ~ t1

2/31t2
2/3!…n/2

.

~76!
r-

For equal timesl n(t,t)51, while, for t1@t2 ,

l n~ t1 ,t2!52n/221 ~77!

and l 2(t1 ,t2)51. We can then chooseL0 such thatc51/4,
2b5m, and 2a52A. We then have the final result

f 0~q,t1 ,t2!5@L~ t1!L~ t2!#d/2
e2N~Q,t1 ,t2!

Jd
, ~78!

where

N~Q,t1 ,t2!5
1

2
Q3l 3~ t1 ,t2!1mQ22AQl1~ t1 ,t2!.

~79!

The inverse Fourier transform off 0(q,t1 ,t2) is the quantity
which is related to thes-correlation function by Eq.~52!:

f 0~r ,t1 ,t2!5E ddq

~2p!d e2 iqW •rW f 0~q,t1 ,t2!

5E ddq

~2p!d e2 iqW •rW@L~ t1!L~ t2!#d/2
e2N~Q,t1 ,t2!

Jd

5S L~ t1!L~ t2!

LT
2~ t,t2! D d/2E ddQ

~2p!d e2 iQW •xW
e2N~Q,t,t2!

Jd
,

~80!

wherex5r /LT , and now

Jd5E ddQ

~2p!d e2N~Q,t,t !5E ddQ

~2p!d e21/2Q32mQ21AQ.

~81!

The Fourier transform of thes-correlation function is given
by

Cs~q,t1 ,t2!5E ddre1 iqW •rW
2

p
sin21@ f 0~r ,t1 ,t2!#

5LT
dE ddxe1 iQW •xW

2

p
sin21@ f 0~x,t1 ,t2!#,

~82!

and the scaling function appearing in our physical scal
function @Eq. ~52!#, is given by

Fs~Q,t1 ,t2!5E ddxe1 iQW •xW
2

p
sin21@ f 0~x,t1 ,t2!#,

~83!

where

f 0~x,t1 ,t2!5S L~ t1!L~ t2!

LT
2~ t1 ,t2! D d/2

3E ddQ

~2p!d e2 iQW •xW
e2N~Q,t1 ,t2!

Jd
. ~84!
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VI. LARGE Q AND SHORT DISTANCES

One of the main successes of the OJK theory is inclus
of the short distance nonanalytic behavior associated w
Porod’s law and the Tomita sum rule. We look here at h
all of this fits into the present development.

Let us consider Eq.~50! for equal timest15t25t@t0 ,
where

F~Q!5F~Q,t,t !

5E
0

1 dy1

y1
e2*y1

1
~dȳ1 / ȳ1!H~QAȳ1!

3E
0

1 dy2

y2
e2*y2

1
~dȳ2 / ȳ2!H~QAȳ2!

3H0~QAy1!H0~QAy2! l̃ d~y1 ,y2!

3Fs„Q l̃ ~y1 ,y2!,ty1
3/2,ty2

3/2
…. ~85!

At first sight, sinceH(QAȳ1) goes at least as fast asQ2 for
largeQ, this integral looks like it gives exponential behavi
in Q for large Q. Closer inspection shows the asympto
dependence onQ is much slower in those regions of they1
and y2 integrals near 1. By expandin
l̃ d(y1 ,y2)Fs„Q l̃ (y1 ,y2),ty1

3/2,ty2
3/2
… about y151 and y2

51, it is not difficult to show, assuming thatH0 and H
increase algebraically withQ for largeQ, that

F~Q!5Fs~Q!
H0~Q!

H~Q!
@11O„H~Q!…21#. ~86!

We will now show thatFs(Q) falls off algebraically with
large wave number. This means that the short-distance
havior is controlled, as in the OJK theory, by the auxilia
field m. We see that the crossover functionsH andH0 do not
influence this short-distance behavior if we chooseH5H0 .
Notice also that it is advantageous to chooseH(Q) to have a
high-power component ofQ so one can ignore the correc
tions toF(Q)5Fs(Q). For this reason we keep theg10 term
in Eq. ~30!, and the crossover functionH(Q) does not influ-
ence the largeQ behavior ofF(Q) until terms ofO(Q214).
We do not expect significant variations in our numerical
sults to depend on whether we keep, for example,g10 or g8 .

Let us look in more detail at the largeQ behavior of
Fs(Q). This requires several steps. First we have, using
~52!, that in coordinate space

Fs~x!5
2

p
sin21 f 0~x!, ~87!

where f 0(x) is given by Eq.~84! with t15t25t:

f 0~x!5E ddQ

~2p!d e2 iQ•x
e2N~Q!

Jd
. ~88!

The short-scaled distance expansion forf 0(x) can be written
in the form

f 0~x!512a0x2~11b0x21c0x41d0x61¯ !. ~89!

If we define the integrals
n
th

e-

-

q.

I n5E
0

`

dQ Qne2N~Q!, ~90!

then

a05
1

6

I 4

I 2
, ~91!

b052
1

20

I 6

I 4
, ~92!

c05
6

7!

I 8

I 4
, ~93!

d052
6

9!

I 10

I 4
. ~94!

Inserting Eq.~89! into Eq. ~87!, and expanding, it is only a
matter of stamina to show

Fs~x!512ax~11bx21gx41nx61¯ !, ~95!

where

a5
2

p
A2a0, ~96!

b5
a0

12
1

b0

2
, ~97!

g5
c0

2
2

b0
2

8
1

a0b0

8
1

3

160
a0

2, ~98!

n5
d0

2
1

a0
3

7!
2

4

105
ba0

21
25

56
b2a01

9

28
ga02gb. ~99!

Thus all of the expansion coefficients forFs(x) are known
in terms of the parametersA andm in N(Q).

The largeQ behavior ofFs(Q) follows in three dimen-
sions from the Fourier representation

Fs~Q!5
4p

Q E
0

`

dx xsin~Qx!Fs~x!, ~100!

and, after repeated integrations by parts, one obtains,
largeQ,

Fs~Q!5 (
n52

`
F2n

Q2n , ~101!

where the Porod coefficients are defined by

F2n54p~21!n11S d2n22

dx2n22 (xFs(x)…D
x50

. ~102!

Using Eq.~95! in Eq. ~102! we easily find

F458pa, ~103!

F65296pa/b, ~104!
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F854p6!ag, ~105!

F10524p8!an. ~106!

Following Tomita, we can show that the lack of eve
terms in the expansion ofF(x) andFs(x) leads to the set o
sum rules

Sn5E d3Q

~2p!3 Q2nFF~Q!2 (
m52

n11
F2m

Q2mG50. ~107!

If we set F(Q)5Fs(Q) in Eq. ~107!, because of Eq.~95!,
the sum rules are obeyed identically. However, if we ins
F(Q) given by Eq.~85! into Eq. ~107!, there is no reason in
general to expect the sum rules to be satisfied. Indeed,
gives a set of conditions onF(Q) which can be used, alon
with the normalization

S05E d3Q

~2p!3 F~Q!2150, ~108!

to determine the parametersA andm, and those determining
H(Q).

VII. DETERMINATION OF THE SCALING FUNCTION

The equal-time scaling functionF(Q) given by Eq.~50!
is a function of thegn , gn

0, A, andm. Our basic assumption
is that our model is characterized by the normalization@Eq.
~108!#, and the set of sum rules given by Eq.~107!. Thus we
have an infinite set of parameters and an infinite set of c
ditions. Here we work out the truncated theory where we
the four conditionsSi50, for i 50, 1, 2, and 3, to determin
the parametersP5$g2 ,g10,A,m% with gn5gn

0. Thus there
are no free parameters.

One then has a rather complicated numerical minimi
tion problem. First assume values of the four parametersP(1)

and computeF (1)(Q) and simultaneously the four sum rule
Sn

(1) . Then choose another setP(2) and determines the se
Sn

(2) . One then needs a measure, like

J ~ i !5 (
n50

3

~Sn
~ i !!2, ~109!

to minimize. Thus, ifJ (2),J (1), the set of parametersP(2)

is preferred over the setP(1). One then iterates this proces
until it converges to a selectedfixed-pointset of values of the
parametersP* and scaling functionF* (Q).

In the numerical determination of theSn it is important to
take into account that these integrals are slowly converg
for large wave numbers. Suppose we have integrated a
rule out to a cutoff wave numberQM , and obtained a con
tribution Sn

QM. If QM is large enough, the system is dom
nated by the large-Q power-law behavior as in Porod’s law
and one can evaluate the remaining contribution to the i
gral in terms of an appropriate Porod coefficient:

Sn5Sn
QM1

F2n12

2pQM
. ~110!
rt

is

n-
e

-

g
m

e-

The determination ofSn
QM is a challenging numerica

problem, since one must perform multiple nested integ
tions y1 and y2 and internal Fourier transforms, and st
maintain sufficient numerical accuracy that the Porod coe
cientsF2n can be extracted and the sum rules construc
Thus the choiceQM must be monitored carefully when de
terminingSn

QM.
As a result of extensive iterations we arrive at the fix

point values@32# for the parametersg251.4994 . . . , g10
50.1232 . . . , A56.395 . . . , andm50.2162 . . . . In Fig. 1
we plot the determined scaling functionF(Q) versus the
accurate numerical results of Oono and Shinozaki@22#. Note
that the structure factor is normalized by the position a
height of the first maximum. The agreement for smallQ is
very good and the width of the peak is in good agreem
with the numerical results. In Fig. 2 we plotQ4F(Q) for the
theory and the same set of numerical results. Again, ove
agreement is good. The value of the Porod coefficientF4 for
the theory and simulation are in excellent agreement. T
feature of a second maximum is present in the theory, bu
position and width are not in very good agreement with
numerical results. In Figs. 3–6 we plot the running contrib
tions to the sum rules to give a feeling for the degree
convergence of the numerical procedure described above
obtain the complete contribution to the sum rules we m
add the last term in Eq.~110!. The analytically determined

FIG. 1. Plot of the scaled structure factor vs scaled wave nu
ber. The solid line represents the theory, and the squares the
merical results from Ref.@22#.

FIG. 2. Porod plot of the scaled structure factor vs the sca
wave number. The solid line represents the theory, and the squ
the numerical results from Ref.@22#.
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Porod coefficients needed in completing the analysis
given by F4521.87, F6519.72, F85252.85, andF105
225.41.

The results here should be compared with previous di
calculations of theF(Q). In Ref. @11# the calculatedF(Q)
obeyed Porod’s law, did not obey the lowest Tomita s
rule, went asQ2 for small Q, and gave a width significantly
too broad compared to numerical results. In Ref.@12# the
large- and small-Q limits were in agreement with expecta
tions but the Tomita sum rule was not satisfied, and
width of the scaling function was significantly too narrow.
Ref. @31# the authors obtained a scaling function which s
isfied Porod’s law and the Tomita sum rules, and was fi
the numerically determined width. Unfortunately, this wo
not only did not give theQ4 small-Q behavior forF(Q), it
did not satisfy the conservation lawF(0).0.

VIII. AUTOCORRELATION FUNCTION EXPONENTS

We turn next to a discussion of the two-time order para
eter correlation function. In this case we focus on the beh
ior of the autocorrelation function, which, when botht1 and
t2 are in the scaling regime, is given by

C~ t1 ,t2!5^c~r ,t1!c~r ,t2!&5E ddq

~2p!d C~q,t1 ,t2!

5c0
2E ddQ

~2p!d F~Q,t1 ,t2!

5c0
2E ddQ

~2p!d E
~ t0 /T!2/3

~ t1 /T!2/3 dy1

y1
Uq~ t1 ,Ty1

3/2!

FIG. 3. Plot of the normalization of the structure factor vs t
cutoff wave number.

FIG. 4. Plot of the sum ruleS1
QM vs the cutoff wave number.
re

ct

e

-
o

-
v-

3E
~ t0 /T!2/3

~ t2 /T!2/3 dy2

y2
Uq~ t2 ,Ty2

3/2!H0~QAy1!

3H0~QAy2!

3 l d~y1 ,y2!Fs„Q
l~y1 ,y2!,Ty1

3/2,Ty2
3/2
….

~111!

In the regimet1@t2 ,C(t1 ,t2) is expected to take the form
@1#

C~ t1 ,t2!'S L~ t2!

L~ t1! D
l

, ~112!

and the exponentl is distinct from the growth law. It is not
difficult to extractl from Eq. ~111!.

For t1@t2 the integral overy2 is restricted to small val-
ues, and the autocorrelation function can be put into the fo

C~ t1 ,t2!5c0
2E ddQ

~2p!d E
0

2 dy1

y1
e@2*y1

2
~dȳ1 / ȳ!H~QAȳ1!#

3H0~QAy1!E
0

2~ t2 /t1!2/3 dy2

y2
g2Q2y2

3 l̃ d~y1,0!Fs„Q l̃ ~y1,0!,Ty1
3/2,Ty2

3/2
…. ~113!

The key observation is that fort1@t2 the auxiliary field cor-
relation function is small, and we can linearize Eq.~83!,
relating the order parameter and the auxiliary field corre
tion function to obtain

FIG. 5. Plot of the sum ruleS2
QM vs the cutoff wave number.

FIG. 6. Plot of the sum ruleS3
QM vs the cutoff wave number.
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Fs~Q,t1 ,t2!'
2

p
f 0~Q,t1 ,t2!, ~114!

where

f 0~Q,t1 ,t2!5S L~ t1!L~ t2!

LT
2 D d/2 e2N~Q,t1 ,t2!

I d
. ~115!

Then, to leading order fort1@t2 ,

f 0~Q,t1 ,t2!5S 2L~ t2!

L~ t1! D d/2 e2~1/& !~Q31&mQ2AQ!

I d
.

~116!

Inserting this result back into Eq.~113!, we find that the
overall time dependence is governed by they2 integral given
by

E
0

2@L~ t2!/L~ t1!#2

dy2y2
d/4'@L~ t2!/L~ t1!#d/212, ~117!

and we can identify@33# l5d/212. This result correspond
to the lower bound established by Yeung, Rao, and De
@18#.

If t25t0 then the analysis must be altered. The key po
is that one must keep the first term in Eq.~24! and the domi-
nant term for long times is the correlation between the s
ond term in Eq.~24! for the field att1 and the initial corre-
lation. Then one has

C~q,t1 ,t0!5E
t0

t1
d t̄Uq~ t1 , t̄ !Nq~ t̄ !^sq~ t̄ !s2q~ t̄ 0!&.

~118!

The analysis of this quantity for larget1 follows the earlier
analysis with respect to rescaling of thet1 dependence. The
main difference in the calculation is that there is noy2 inte-
gration as in thet2@t0 case, and one has the direct factor
in Eq. ~116!, which leads to the behavior

C~ t1 ,t2!'~L1!2d/2. ~119!
ys
ai

t

c-

s

In this case we again obtain that the exponent is given by
lower bound valuel05d/2 found in Ref.@18#.

IX. DISCUSSION

In this paper we have developed a theory of the pha
ordering kinetics of the CH model which plays a role simil
to the OJK theory for the NCOP case. The theory includ
all of the desired features discussed in Sec. II including
elusive Tomita sum rule. It is also in good numerical agre
ment with the best available numerical results. The theo
because of the nonlocal mapping onto the auxiliary field
much more difficult to treat analytically when compared
the OJK theory. Nevertheless it seems to work well. Wh
we are able to extract the apparently mean field values
the nonequilibrium exponentsl andl0 , it seems very diffi-
cult to include the nonlinear terms in them field necessary to
give the higher-order corrections for the exponents.

There are several directions in which this work can
extended. One can, in principle, include additionalgn param-
eters in the model and satisfy higher-order sum rules. T
will be numerically difficult and probably will not improve
the scaling function significantly. While the detailed analy
here has been for three dimensions, with only a mod
amount of additional analytical work, the selection proce
can be applied to two-dimensional systems. The most in
esting new direction is to apply this same theory to off cr
cal quenches. The expectation is that the scaled struc
factor broadens significantly as one moves away from c
cal quenches. It will be interesting to see how well the the
describes the system as one moves toward the coexist
curve and the regime where the Lifshitz-Slyosov-Wagn
theory @34# is applicable.
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