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Spinodal decomposition and the Tomita sum rule
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The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory
developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The
theory also gives good agreement with numerical results for the order parameter scaling function in three
dimensions. The values of the associated nonequilibrium decay exponents are given by the known lower
bounds.

PACS numbgs): 05.70.Ln, 64.60.Cn, 64.75g, 98.80.Cq

I. INTRODUCTION the generalized form of the Tomita sum r{ile/], are used to
determine the parameters characterizing the nonlocal map-
In the area of phase-ordering kinet[dd, there are a wide ping and the correlation function for the underlying auxiliary
Variety of systems which satisfy a form of dynamical scaling_fie|d. Thus one has a nonlinear selection problem where one
In the case of systems with a nonconserved order parametgimultaneously constructs the parameters of the mapping and
(NCOP we have a simple approximate theoretical modelthe scaling function. The selected scaling function is found
due to Ohta, Jasnow, and Kawas#R] (OJK) which cap- to be in good agreement with the best available numerical
tures the main scaling properties of the associated physic&esults in three dimensions. Nonequilibrium exponents are
systems. In the case of a conserved order parani€@pP also determined in this theory and take on values, as for the
the situation is much less satisfactory. The difficulty in theOJK theory, corresponding to the knowt8] lower bounds.
COP case is that there are competing length scales which

lead to the necessity of treating crossover. This crossover Il. PHENOMENOLOGY
connects up the short-scaled-distance nonanalytic domain _ o _
wall behavior associated with Porod's Ig8-5] and the The equation of motion in the CH model, governing the

large distance constraints of the conservation law. A theorgonserved scalar order parametgris given in dimension-
is offered in this paper which is consistent with all of the less form by
prominent scaling features in the case of a conserved scalar
order parameter. Y=V2[V' () - V3. (1)

An auxiliary field method is used in essentially all the
availa_lble (_axpl_icit calculgtions of scaling functions in phase-y/(y) is a degenerate double-well potential. Typically this
ordering kinetics. Thus in the OJK approd@6—9, and our  system is driven by a set of uncorrelated random initial con-
previous work[10-12, a local mapping from the original gjtions. We look here at critical quenches whépe=0. In
order parameteys onto an approximately Gaussian variable ihjs case the system is unstable, and responds by locally
m was developed. While these methods can be shown tgrowing competing degenerate patches of the stable low-
work well for the NCOP case, there are severe limitations inemperature-ordered phases. These patches correspond to do-
the COP case. In particular Yeung, Oono and ShinoZE8i  mains separated by sharp walls of widthAs time evolves
found that such a local mapping in the COP case led tqhese domains coarsen, and the order grows to progressively
mathematically unacceptable results within the theory. All Oflonger length scales. The growth ldwt) increases without
these theories were developed with the idea that the magsond at a time after the quench. At long enough times
ping, — ¢(m), leads to an equation of motion farwhich | (t) dominatesL(t)>¢, and the order parameter correla-

could be argued to be approximately consistent with &jon function satisfies the scaling equatid9—21]
Gaussian distribution fom. In Refs.[14,15 a different ap-

proach was taken in treating the NCOP case. It was shown
that the equation of motion for the auxiliary fiefd can be
constructed with appeal only to the form of the growth law, . : . .
defined below, and certain general symmetry constraints. Ué/yherex=r/L(t), and ¢y is the magnitude Oi_ﬁ in the or-
ing an interesting expansion method it was shown how on ered statg. .The structure factor, the Fourier transform of
could obtain the OJK result in zeroth order of a systematic (r.0), satisfies
expansion. Higher-order corrections for the associated non- 4.2
equilibrium exponents were also obtained. C(q,t)=L%gF(Q), (©)]

In this paper this general idea is applied to the simplest
COP system given by the Cahn-Hilliafd6] (CH) model. =~ whereQ=qL is a scaled wave number, addhe number of
One is led to introduce a nonlocal mapping between the orspatial dimensions. There are a number of general properties
der parameter and the auxiliary field, and only certain gena correct theory of the phase ordering CH model must satisfy
eral constraints on the theory, like the conservation law an¢22,12,.

C(r,t)=((r,0)(0)) = Y3F (x), )

1063-651X/2000/6(5)/596711)/$15.00 PRE 62 5967 ©2000 The American Physical Society



5968 GENE F. MAZENKO PRE 62

(1) The growth law is given by the Lifshitz-Slyozov- If we insert the ansatz given by E(p) into the equation
Wagner[23] form: L~t¥3. This result can be obtained a of motion[Eq. (1)], we obtain
number of different way$§24—2§ that are all consistent.

(2) The scaled-structure fact®t(Q) has aQ* behavior ap (0 )~ ,~
[27] for small scaled wave numbegsdirectly reflecting the Fa ﬁ(f =VAV'(g+0O/L)-V(yp+06/L)]. (8
conservation law.

(3) The scaled-structure factor satisfies E%g%’s lamye can use scaling arguments to estimate the contributions
[3-6,28 for large scaled wave numbeis(Q)~Q - of various terms. We explicitly assume tHaft) =Lt*3 in
(4) The scaled-structure factor also satisfies the Tomitahe scaling regime. The first term on the left-hand side of Eq.

[17,6] sum rules. The _scgling funct_ioﬁ(x) has no even (8), dyil at, is of O(L %) in the scaling regime. Then we can
terms, except the first, in its expansion in powerscof estimate

F(X)=14Fx+Fax3+---. (4)
Jd (0 4

—|7|=OL™), 9
While there are theories which satisfy some of these re- gtiL

qguirements, there has been none so far which satisfies all , )
four. Our goal here is to find the simplest theory for the copANd this term can be dropped when compared to the leading
case which does satisfy all of these properties and leads to Aider in the equation of motion. Next we can expand

explicit form for the scaled-structure factor which can be o

compared _to the best numerical determinationE(dp). The V' (J+0O/L)=V'(P)+V" () —+O(L™?). (10
challenge is to match the small* behavior forF(Q) with L

the largeQ ~* behavior(in three dimensionswhile preserv- . .

ing the Tomita sum rule. Our approach will be similar to that!" comparing these two terms we have, using Egj.and
developed in Refd14,15, but with some significant differ- M~L., that

ences. - d?o(m+u) o
\% (lﬁ):T%O(L )s (11
Il. AUXILIARY FIELD MAPPING FOR COP

As in previous work, we assume in the scaling regime thatind the term proportional tov”()=V" (i) +O(L 1)
the order parameter can be decomposed into an orderingpminates at leading order for long times. Finally we have
component, which contributes to the order parameter structhat the last term on the right-hand side of Efj,
ture factor atO(1), and afluctuating piece which is of

higher order in powers of L{t), V4(”¢+ O/L)~0O(L™%), (12)

Y=y+0/L, (59  and can be dropped in E(). The equation of motion then
reduces to the key result
where® is O(1). Here we assume that the ordering compo-

nent3 can be written in the form 9 _ ko

" Tvz, (13

Y=co(m+u), (6)
where kg=V"(i)>0.
where, as usualy(m) is the solution of the classical inter-  The quantity® is arbitrary except for the very important

facial equation constraints that it be o®(1) in the scaling regime, and it
must be consistent with the system ordering. It is at this stage
d?o ) that we realize that there is an apparent flexibility in the
d_mZ:V (o), (7) " construction of the scaling solution. Since there is a belief

that the scaling functions are universal, there must be mecha-
with the boundary conditions lim. ... o(m)==*gyp. It nisms, like th_e nonlinear eigenvglue problem encquntered in
turns out in this case that it is necessary to introduce twd?_ef- [10], which selects the $callng structures which do not
independent fields andu. We will organize the theory such directly depend on the physics at the smaller length scales.
thatmis treated as the auxiliary field which, as in the NCOP The key assumption in going forward is that the auxiliary
case, governs the short scaled distance physics associafégld method can be used to describe theer scaling re-
with Porod’s law and the Tomita sum rule. We will assume,9iMme, and that there is a crossover tooarterscaling regime
as a first approximation, that is a Gaussian variable driven dominated by the conservation law. The building blocks we
by an equation of motion of a general form compatible with€an use to constru€, Whli:h are compatible with this cross-
scaling and with coefficients determined by selection pro-over and are oD(1), arey anda(m).
cesses described in detail below. The quarfitis, in prin- The simplest assumptiof29] for the Fourier transform
ciple, to be determined as a function of the more fundamen®,(t), robust enough to give a satisfactory solution to the
tal variablesm and u. In practice we will not need to problem, is of the form
construct the correlations for the fieldexplicitly, or assume _ _ 5
that it is a Gaussian field. 0 4(1)=Mg(t) (1) = Ng(t) og(1), (14
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whereM 4(t) andNg(t) are functions to be determined. The 9G(Q?)
. g M(t)= 25
equation of motion(13) is then given by o= a (25
Ipg(t) ~ -
o Mg(Ddg(D)+Ng(t)ag(b), (15  whereQ=qL(t). Similarly,
where 2
G
Ng(t)= G (26)
K0q2~ (9t
Mq(t)z qu(t)a (16)
We can then write
2
Koq ~
Nq(t): qu(t). (17 , , ,
M (t): ﬂG(Q ) ﬂz 0G(Q ) i 2L2t2/3
We can easily obtain a partial solution to E45). Let us 4 9Q* gt Q% ot 4o
define the auxiliary quantity :aG(Qz) E Q_ZZE H(Q?) o
Ug(ty 1) =el=FarMe(n)] (18) Q> 3t 3 t
and write
where
Ug(t)=Uq(t,to) xq(1)- (19
_ _ . _ . _ a5 9G(Q7)
Taking the time derivative of this expression, we find H(Q9)=Q Fro (28
0] ~ Xq(t)
ot :_Mq(t)wq(t)+uq(tat0) at (20 Similarly,
Comparing Eqs(15) and (20), we obtain the equation for 2 Hy(Q?)
Xq(1), Ng(t)=3 Ot . (29
Ixq(t)
Ugltito) = = Ng(Dog(t), (21)

For our purposes it will be sufficient to assume tkhand

. . H, have power series forms
which can be rewritten as 0 P

dxq(t
X;t( )=Uq<to,t>Nq<t>Uq<t>- (22) HQ)=2, 7Q", (30)

This equation has the solution

- t — H = oQn. 31
Xq(t)=¢//q(t0)+jtodth(to,t)Nq(t)a'q(t) (23) o(Q) nZZ "R @D

or For reasons discussed below, we will work explicitly with a
o model where onlyy,, 10, v9, andyJ, are nonzero.
t!fq(t)=Uq(t,to)t/fq(to)+ft dtUq(t, t)Ng(t)og(t).
° (24 IV. STRUCTURE FACTOR
This nonlocal relationship betwe&ph(t) and oo(t) should The quantity of central interest is the order parameter
: . 4 : structure factor
be contrasted with the local mapping used in previous theo-
ries. Because of the nonlocality, the criticism of local map-
pings in the COP case due to Yeung, Oono, and Shinozaki  c(qt. t,)= t) - o(t)) =Pt D o(t,)
[13,3Q is irrelevant for the discussion here. (At t2) =(Wg(t) Y—(12)) = (Yq(t) ¥-q(t2) (
Note that we need to determine the functidvig(t) and
Ny(t), and the variance of the fielsh. Averages ovem are ) . . . )
discussed in more detail below. Focusing Mrand M, for where in the second line we recognize that in the scaling
our purposes here, we only need these quantities in the scdfdime only the ordering component of the order parameter
ing regime. Inspection of Eq18) shows that a general form Contributes to the structure factor. Inserting Eg4) for
compatible with scaling is given by #4(t1), we obtain
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t, -
C(qrtlat2)2<ﬁ dtUq(ty,t1)Ng(ty)og(ty)
0
t, -
Xft dtzuq(tz,tz)Nq(tz)O‘q(tz)>
0
t, -
:ft dt;Uq(ts,t1)Ng(ty)
0

t2 R —_ —_— —_—
X ft dt,Uq(to,t5)Ng(t2)Cu(a,ty,ty),
0
(33
where

Ca’(qitlvt2)2<0-q(t1)0-q(t2)>- (34)
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ty /T
Cla,ty,tr)= lﬂ%J o Tds;Uqg(t1,Ts)Ng(Tsy)

to

to /T _
X ft ot Tds,Uy(to,15)Ng(Tsy)

0
XLYTs, Tsp)F (qLr(ty,t)1(s1,5,),
XTs,TSy)

t T tIT
=¢Sf dS1Uq(t1aT51)f dsUq(t2,Tsy)
to/T to/T

X TNg(Ts) TNg(Ts)LYT)I1%(sy,57)
X F(r(Ql(Sl 152)1Tsl vTSZ)

=LYT)yaF(Q,ty,ty), (42)

Note that we have assumed that the correlations with thevhere Q=qL(t;,t,)=qL(T), and the physical scaling
initial state have decayed to zero for long times compared téunction is given by

the O(1) terms contributing to the scaling function. We also
note thatC(q,t,,t,) depends only on the magnitude apf

The next step is to realize th&,(q,t;,t,), which we
calculate explicitly below, satisfies a scaling relation

Co(0,ty,t) =Lty ,tp) YGF ,(AL(ty,t2) s, t2). (35

Inserting Eq.(35) into Eq. (33) gives
ty, _ _
C(q,tl,tz)zjt dtUq(ty,t1)Ng(ty)
0

t2 — PR— J— —_— —
X t dtZUq(tz,t2)Nq(t2)Ld(t1,t2)1,03
0

XFo(AL(ty,to) b1, t). (36)
Let us now define
L3(t1,t) = 3[L2(ty) + L7(t2)], (37
and choose a tim& such that
Ly(ty,t2) =L(T). (38
Rememberind_(t) =L,t® we have
T=[3 (5912 (39

Clearly fort;=t,=t, T=t. Now make the change of vari-
ablest;=Ts; andt,=Ts, in Eq. (36). This requires treat-
ment of the quantity

Lr(ty,t)=L(Tsy, Ts) =L(T)I(51,52)

=L1(t1,t)1(s1,82), (40
where
(s1,52) = V3(s7?+532). (42)

Equation(36) then takes the form

o
ds;Uq(ts, Tsy)
IT

t /T
Jo e

X Uq(t2, TS) TNg(Ts) TNg(T)

X19(s1,5)F (QI(51,5,), TS, TSy).

(43

F(Q,tlvtz):Jt

We can simplify things a bit in the quantitiék,, defined by
Eq. (18), where we have in the argument of the exponentials

t T
j dTMq(T):f leMq(Tzl)
Tsy i

Inserting our general form foM, given by Eq.(27), we
have

(44)

T Ut 2 H(@QL(Tz))
drM =f P
fsl 7 q(T) 51 13 TZl
2 J‘t/T dle(QI( ) 45
==z — z
3ls, 7 !
wherel(z,)=21", and similarly
2 Ho(Ql(s1)) _ 2 Ho(Ql(sy))
TNq(Tsl)—T§ Ts, =3 s . (46)
Then
Ug(ty, Tsy) = el (2015 0z 2R Q1G] @7

and the scaling function is given by

ty/T

ty /T
asUg(ty.Ts) | dsiU(t,.Tsy)
IT ta /T

0

F(Q,'fl,tz)=ft

0

XE Ho(Ql(sy1)) z Ho(QI(sy))

3 S 3 S,

X19(s1,82)F o(QI(81,52), TSy, TSp),

(48)
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We can then make one final change of integration variables 1 q q° .
to y;=s?" (i=1,2). We then have wq(t)=agztaz+ar—+asq
2/3 2/3\ 1/2 1/2
S17tSs; Y1ty ~ 1
[(s1,8)= 5 :( > ) =1(y1,Y2), =E3(a0+a1Q+a2Q2+a2Q2+a3Q3), (57)
(49)
) ] ) where Q=qgL. We can use general arguments, similar to
the equation for the scaling function becomes those due to Ohta and Nozdld1], to justify including the
o 2 dy odd terms inQ. Equation(57) can be rewritten in the con-
F(Qty tp) = f Y Ut Ty venient form
(tg/MR Y1 ( )
aQ(Q(t) d
(t,m23dy, A wq(t)= ————— wo—Int, (58
X —SUq(t,,T at Jt
f(tolT)ZB Vs q( 2, 1Y )
where
X Ho(QVY)Ho(QVY2)
Td 91 32 . 3 Q(Q)=aQ+bQ*+cQ?, (59
XI (ylayZ)F(r(Ql(ylryZ):Tyl 1Ty2 2):
(50 @0~ —ao/L3, a=a;/L3, b=a,/(2LY), and c
=a3/(3L3).
and, Witthzzf’3 in the integral, The equation of motion for the auxiliary fielfEg. (56)]

. has the general solution
(t, MR —
Ul (t, Ty3)=el~S (dy1 /YDHQYD], 51
ot TyiH =€y, (51) mg(t) = e~ /187 @a(m (to) (60)
For our simple polynomial model given by EO) we can i ) . . L
carry out they, integration inU explicitly. Inserting Eq.(58) into the integral in the exponential gives

mg(t) = e~ [2QM)-2Q(to)Igwo Moy (t,)
V. AUXILIARY FIELD SCALING FUNCTION a 9

@0
We must now work out the scaling properties of the field :(l) ef[O(Q(t»fﬂ(Q(to))qu(tO)_ (61)

o(m(r,t)) in the case wheren is a Gaussian variable. It is to

well known that in the scaling regime . , . :
greg If we then form the auxiliary field correlation function, as

Co(ry,ty,otp) =(a(M(ry,t))a(M(r,,t5))) defined by the Fourier transform of E¢4), we obtain
2 titp| @0 _
=y —sin Ho(rytura ). (52 Co(aty tp)=| 77| e~ [BQIF QLI =20Ql0N]
. 0
where X Cq(q,tg,to)- (62)
Co(r1,t1,r2,tp) If we go to the equal-time limit, this becomes
fo(rlltlerltZ): T (53)
VSo(t2)So(t2) t) % f2000)- 2000
Co(a,t,t)= ] ¢ 0Co(q,t0,to)-
Co(ry,ty,ra,tp)=(m(ry,ty)m(ry,tz)), (54 0
(63)
and The important autocorrelation function, defined by Ezp),
So(t)=Colry ty.F1.ty). (55 'S given then by

Thus we need to focus on the determination of the auxiliary t :f Ca(a.t.t
field correlation functiorC,. So(t) (2m) oty
Let us assume that the general equation of motion satis-

. : o . 1 ddQ t | 2«0
fied at Gaussian level by the auxiliary fiehd has the local = Tf _d(_) e~ [22(Q)—20(QL(tp)/L(1)]
form in Fourier space, L5%(t) J (2m)" (o
amg(t) X Col Q/L(1),to,t0]. (64)
ot == wq(t)mq(t)a (56)

For largeL(t) we can replace

for t>t,. Since the growth law is of the forin=Lt*3, we Co[Q/L(1),to,to]—Jo, (65)
see that for a scaling result we must choosg(t)

~0O(L~3). Since we can estimatg~O(L 1) in the scaling whereg, is characteristic of the initial correlation function,
regime, we write quite generally that and
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2Q0(Q)—
to obtain, in Eq.(64),

t 2w ddQ - gO t 2wq
So(b)= a% ) f&wﬂemwgﬁﬁ%E) Ja-
(67)

2Q[QL(to)/L()]—=20(Q), (66)

Here we have introduced the constant

f (—d e . (68

By assumption, the auxiliary field scales with the growth
law, m~L and Sy(t)~L2(t). Using this result back in Eq.

(67) gives
So(t)~L2@03 9= 2, (69)
This fixes the constanb, to have the value

2+d

Using this result in the scaling regime, the auxiliary field
correlation function, given by Eq62), can be written in the

form

itp) @0
Co(Q,ty,tr)= (_2) e [Q(Q(tl))+Q(Q(t2))]gO. (71)
to

GENE F. MAZENKO
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For equal timed,(t,t)=1, while, fort;>t,,
[n(ty,tp)=2"2"1 (77)

andl,(t;,t,)=1. We can then choodg, such thatc=1/4,

2b=pu, and 2a=—A. We then have the final result
efN(QvtlrtZ)
- dr2
fo(d,ty,to) =[L(ty)L(t2)] T, (78)
where

1
N(Q,tq,ty) = §Q3| 3(t1,tp) + uQ?—AQly(ty,tp).

(79

The inverse Fourier transform é§(q,t;,t,) is the quantity
which is related to ther-correlation function by Eq(52):

-ig-F

q
fo(r,tl,t2)=fme fo(a,ts,to)

e N(Qvtl ’tZ)
f——qymwumuumm—fﬂ——

_[Lt)L(tp) |2 d'Q 5 e MOt
R J@wwe 3,

(80)

Eventually we need the inverse Fourier transform of the norwherex=r/L¢, and now

malized correlation function

Co(a,ty,tp)

f S e T
N S

(72

diQ
f e "= [ e

~12Q%- pQ?+AQ.

(81)

Using previous results, this can easily be put into the form The Fourier transform of the-correlation function is given

—[QQ(t)+2(Q(t2))]
e

— d/2
fo(qvtlvtz) [L(tl)L(tZ)] \]d

(73

With Q(Q) given by Eq.(59), we have in the argument of

the exponential:
QQ(t)+Q(Q(tp))=ag[ L(ty) +L(tx)]+bo?[L2(ty)
+LA(t) T+’ L3(ty) +L3(ty)].
(74)

If we introducelL(tq,t
obtain

Q(Q(t))+ Q(Q(t2)=2aQl(t1,t5) +2b Q3 5(ty,ty)
+2cQ%5(ty,ty), (79

»), as in Eq.(37), andQ=qLy, we

where
n/3 n/3
7+t

1
) 2 g (tilg_i_tg/s))n/z'
(76)

(ty)+L"(tp)
LT(ts,tp)

In(ty,tp)= 2(

by
2
C(r(qvtlth):f ddre*iar ;Smil[fo(r,tl,tz)]

-2
:L_?_J ddXe+|Qx ;S'nil[fo(xytlatz)]a

(82

and the scaling function appearing in our physical scaling

function[Eq. (52)], is given by

-2
Q)= [ et @ Zsin gty to)],

(83
where
L(tl)L(tz)>d’2
fo(X,t1,to)=| ————
0( 1 2) L‘2|'(t1,t2)
’ e NQityty)
I ~X
f(z )de 3, . (89
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VI. LARGE Q AND SHORT DISTANCES o
: . : In:J dQ Qe M9, (90)
One of the main successes of the OJK theory is inclusion 0
of the short distance nonanalytic behavior associated with
Porod’s law and the Tomita sum rule. We look here at howthen
all of this fits into the present development. 11
Let us consider Eq(50) for equal timest;=t,=t>t,, aO:__“, (91)
where 61,
F(Q=F(Q.t,t) 11
bo=— o= — (92)
1 dy]_ 20 |4
:f ~ L (A9 7 HQ\TD)
0 Y1 6 lg ©3
COZ_ -,
o 701
fl Y2 13 (a7 M) N
~ do=— = —. (94)
X Ho(QVy1)Ho(Qvy2)TU(y1,y2) 9 1

XF,(QT(y1.y2) tyd? ty3?). (85)  Inserting Eq.(89) into Eq.(87), and expanding, it is only a
matter of stamina to show
At first sight, sinceH (Q/y;) goes at least as fast & for
large Q, this integral looks like it gives exponential behavior Fo(x)=1—ax(1+px2+ yxt+vx+- ), (95
in Q for large Q. Closer inspection shows the asymptotic

dependence of is much slower in those regions of tlye where
and vy, integrals near 1. By expanding 2
T9y1,Y2)Fo(QT(y1.Y2) ty: " ty3?) abouty,=1 and y, a= N2, (96)
=1, it is not difficult to show, assuming thai, and H
increase algebraically wit for large Q, that a, by
B=1515 97
o(Q
FIQ=F,(Q 4 [1+O(H(Q)) . (86)

2
_ Co bo aobo 3 2
Y=2" 8" 8 "160% °8)

We will now show thatF ,(Q) falls off algebraically with

large wave number. This means that the short-distance be-

havior is controlled, as in the OJK theory, by the auxiliary do a0 25 9

field m. We see that the crossover functidtsindH, do not =Sty 1055310 cgB @0t g7~ vB. (99

influence this short-distance behavior if we choése H.

Notice also that it is advantageous to chob§®) to have a  Thus all of the expansion coefficients fBr,(x) are known

high-power component o so one can ignore the correc- in terms of the parametess and . in N(Q).

tions toF (Q) =F ,(Q). For this reason we keep thg, term The largeQ behavior ofF ,(Q) follows in three dimen-

in Eq. (30), and the crossover functidi(Q) does not influ-  sjons from the Fourier representation

ence the larg® behavior ofF (Q) until terms ofO(Q 4.

We do not expect significant variations in our numerical re-

sults to depend on whether we keep, for examplg,or vs. Fo(Q)= f dx xsi(Qx)F ,(x), (100
Let us look in more detail at the larg® behavior of

F,(Q). This requires several steps. First we have, using Edand, after repeated integrations by parts, one obtains, for

(52), that in coordinate space large Q,
_E i1 - I:2n
Fol)= 2 sim o), ®7 FAQ=3 5o (101
=2 Q
wherefo(x) is given by Eq.(84) with t; =t,=t: where the Porod coefficients are defined by
dQ . e N9 2n-2
— -iQ-x d<"
fo00= | ae @ S ®9) Fon=d(~ 1)”*1( e (x))) . (02
x=0
The short-scaled distance expansionffgix) can be written ) ) o
in the form Using Eq.(95) in Eq. (102 we easily find
fo(X)=1—agx?(1+bgx?+cox*+dgx8+-+-). (89 Fy=87a, (103

If we define the integrals Fe=—967alp, (104
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Fg=4w6!ay, (105 I 1
Fio=—4m8lav. (106 .
Following Tomita, we can show that the lack of even 8
terms in the expansion &f(x) andF ,(x) leads to the set of F(Q)
sum rules ]
de n+1 F2 b
Sn:JWan{F(Q)— > Q—Z{Q =0. (107 L
m=2 30 35 40

If we setF(Q)=F,(Q) in Eqg. (107), because of Eq(95),

the sum rules are obeyed identically. However, if we insert
F(Q) given by Eq.(85) into Eq.(107), there is no reason in
general to expect the sum rules to be satisfied. Indeed, th
gives a set of conditions oR(Q) which can be used, along
with the normalization

FIG. 1. Plot of the scaled structure factor vs scaled wave num-
Pser. The solid line represents the theory, and the squares the nu-
merical results from Ref.22].

The determination ofSSM is a challenging numerical
problem, since one must perform multiple nested integra-
tions y; andy, and internal Fourier transforms, and still
maintain sufficient numerical accuracy that the Porod coeffi-
cientsF,, can be extracted and the sum rules constructed.
Thus the choic&, must be monitored carefully when de-
terminingSSM.

As a result of extensive iterations we arrive at the fixed
point values[32] for the parametersy,=1.49% ..., 1
=0.122...,A=6.3%..., andu=0.21&.... InFig. 1
we plot the determined scaling functidn(Q) versus the

d3
SOZJ'(ZTQ)SF(Q)—IIO, (108

to determine the parametefsand i, and those determining

H(Q).

VII. DETERMINATION OF THE SCALING FUNCTION

The equal-time scaling functioR(Q) given by Eq.(50)
is a function of they,,, yﬂ, A, and . Our basic assumption
is that our model is characterized by the normalizafien.  ;ccyrate numerical results of Oono and Shinogag]. Note
(108], and the set of sum rules given by EG07). ThuS We  hat the structure factor is normalized by the position and
haye an infinite set of parameters and an infinite set of COMReight of the first maximum. The agreement for sn@lls
ditions. Here we work out th_e truncated theory where We US§ery good and the width of the peak is in good agreement
the four conditions5;=0, fori=0, 1, 2, and 3, to determine it the numerical results. In Fig. 2 we pl@*F(Q) for the

the parameter®={v,,v19,A,u} with y,= yﬂ. Thus there
are no free parameters.

theory and the same set of numerical results. Again, overall
agreement is good. The value of the Porod coeffidigntor

One then has a rather complicated numerical minimizathe theory and simulation are in excellent agreement. The

tion problem. First assume values of the four parame®é&bs

feature of a second maximum is present in the theory, but its

and computé=("(Q) and simultaneously the four sum rules position and width are not in very good agreement with the
S{!). Then choose another sBf?) and determines the set numerical results. In Figs. 3—6 we plot the running contribu-
Sﬁz). One then needs a measure, like tions to the sum rules to give a feeling for the degree of
convergence of the numerical procedure described above. To
obtain the complete contribution to the sum rules we must

(109  add the last term in Eq110). The analytically determined

3
T0=2 ()
n=0

to minimize. Thus, if7 @< 7 @), the set of paramete?

is preferred over the s&(*). One then iterates this process
until it converges to a selectdited-pointset of values of the
parameter$* and scaling functiorF* (Q).

In the numerical determination of tt&, it is important to 1
take into account that these integrals are slowly convergingQ F (Q)
for large wave numbers. Suppose we have integrated a sun
rule out to a cutoff wave numbed,,, and obtained a con-
tribution SSM. If Q\ is large enough, the system is domi-
nated by the larg€ power-law behavior as in Porod’s law,
and one can evaluate the remaining contribution to the inte-
gral in terms of an appropriate Porod coefficient:

FIG. 2. Porod plot of the scaled structure factor vs the scaled
wave number. The solid line represents the theory, and the squares
the numerical results from Rdf22].

SHZSQM-F I:2n+2
n

70 (110
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FIG. 3. Plot of the normalization of the structure factor vs the F|G. 5. Plot of the sum rulsg“" vs the cutoff wave number.

cutoff wave number.

Porod coefficients needed in completing the analysis are f(tz/T 2’3dY2 312)
given by F,=21.87, F4=19.72, Fg= —52.85, andF o= X J gy, Dalte T Ho(QVYya)
—25.41.

The results here should be compared with previous direct X Ho(Q\Y»)

calculations of theF(Q). In Ref.[11] the calculated=(Q)
obeyed Porod’s law, did not obey the lowest Tomita sum
rule, went agQ? for small Q, and gave a width significantly
too broad compared to numerical results. In Réf] the
large- and smal® limits were in agreement with expecta- In the regimet;>t,,¥(t,,t,) is expected to take the form
tions but the Tomita sum rule was not satisfied, and thgl]
width of the scaling function was significantly too narrow. In
Ref.[31] the authors obtained a scaling function which sat-
isfied Porod’s law and the Tomita sum rules, and was fit to
the numerically determined width. Unfortunately, this work
not only did not give theQ* small-Q behavior forF(Q), it
did not satisfy the conservation lak(0)>0.

X19(y1,Y2)F o(Q'(y1,Y2), TYF2,Ty3?).

(111

W(ty,tp) (L(IZ))A (112
PREL(ty))
and the exponert is distinct from the growth law. It is not
difficult to extractA from Eq. (111).
For t;>t, the integral ovel, is restricted to small val-
ues, and the autocorrelation function can be put into the form

We turn next to a discussion of the two-time order param- d
eter correlation function. In this case we focus on the behav W(ty,t,)= g2
ior of the autocorrelation function, which, when bdthand 12 °) (2 (2m)d
t, are in the scaling regime, is given by

VIIl. AUTOCORRELATION FUNCTION EXPONENTS

dyl ol I Ay HQ 7]

2 1 /d
diq X Ho(QVY1) f el 2y,
‘I’(tl,tz):<¢(r,t1)l//(ryt2)>:fWc(q,tl,tz) Y

XT4y1,0F,(QT(y1,0), Ty¥?,Ty3?. (113
_¢oj (ﬁF Q,ty,ty)

The key observation is that foy>t, the auxiliary field cor-
relation function is small, and we can linearize E§3),

2/3
=¢2 —dd Q [um dyl Ug(ty, T 3/2) relating the order parameter and the auxiliary field correla-
o) (2 2/3 alty, 1y1 . . °
(2m)% Jitgm® ¥1 tion function to obtain
' ‘ ‘ 80.0 : ‘ .
o N N
w0 \ /\ \\ |
—05F i /\/ \ / .\ |
Qum 0 0.0 \
M
Sl -10} i 53 -20.0 | \ J
! f
-15+ i —60.0 |- |
0 310 610 910 12|.0 —100.0 . L L .

15.0 0 3.0 8.0 9.0 12.0 15.0

Qu

FIG. 4. Plot of the sum rulsfM vs the cutoff wave number. FIG. 6. Plot of the sum rulssQM vs the cutoff wave number.
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2
Fo(Qty,t)~ ;fO(Q-tlth)u (114
where
L(ty)L(ty)|2e NQ 1t
fO(Q,tl,tz):( L2 I . (115)
T d
Then, to leading order far,>t,,
2L (t,) d/Ze—(llx/Z)(Q3+\/§MQ—AQ)
fO(Qvtlth):( )
L(t1) lg
(116

Inserting this result back into Eq113), we find that the
overall time dependence is governed by yhentegral given

by

dy,y 9 ~[L(to)/L(t;)]92+2,

2[L(to)/L(t1)]?
f [L(t2)/L(ty)] (117

GENE F. MAZENKO
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In this case we again obtain that the exponent is given by the
lower bound value\y=d/2 found in Ref,[18].

IX. DISCUSSION

In this paper we have developed a theory of the phase-
ordering kinetics of the CH model which plays a role similar
to the OJK theory for the NCOP case. The theory includes
all of the desired features discussed in Sec. Il including the
elusive Tomita sum rule. It is also in good numerical agree-
ment with the best available numerical results. The theory,
because of the nonlocal mapping onto the auxiliary field, is
much more difficult to treat analytically when compared to
the OJK theory. Nevertheless it seems to work well. While
we are able to extract the apparently mean field values for
the nonequilibrium exponentsand) g, it seems very diffi-
cult to include the nonlinear terms in thefield necessary to
give the higher-order corrections for the exponents.

There are several directions in which this work can be
extended. One can, in principle, include additiopalparam-

and we can identify33] A =d/2+ 2. This result corresponds eters in the model and satisfy higher-order sum rules. This
to the lower bound established by Yeung, Rao, and Desavill be numerically difficult and probably will not improve

[18].

the scaling function significantly. While the detailed analysis

If t,=t, then the analysis must be altered. The key pointhere has been for three dimensions, with only a modest

is that one must keep the first term in E84) and the domi-

amount of additional analytical work, the selection process

nant term for long times is the correlation between the seccan be applied to two-dimensional systems. The most inter-

ond term in Eq.(24) for the field att; and the initial corre-
lation. Then one has

t, - _
Clatyto)= [ MUyt DN Torg( Do (To)-
’ (118

The analysis of this quantity for large follows the earlier
analysis with respect to rescaling of thedependence. The
main difference in the calculation is that there isyyointe-

esting new direction is to apply this same theory to off criti-
cal quenches. The expectation is that the scaled structure
factor broadens significantly as one moves away from criti-
cal quenches. It will be interesting to see how well the theory
describes the system as one moves toward the coexistence
curve and the regime where the Lifshitz-Slyosov-Wagner
theory[34] is applicable.
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